that could be raised at the draft environmental impact statement stage but that are not raised until after completion of the final environmental impact statement may be waived or dismissed by the courts. City of Angoon v. *Hodel*, 803 F.2d 1016, 1022 (9th Cir. 1986) and Wisconsin Heritages, Inc. v. Harris, 490 F. Supp. 1334, 1338 (E.D. Wis. 1980). Because of these court rulings, it is very important that those interested in this proposed action participate by the close of the 45-day comment period so that substantive comments and objections are made available to the Forest Service at a time when it can meaningfully consider them and respond to them in the final environmental impact statement.

To assist the Forest Service in identifying and considering issues and concerns on the proposed action, comments on the draft environmental impact statement should be as specific as possible. It is also helpful if comments refer to specific pages or chapters of the draft statement. Comments may also address the adequacy of the draft environmental impact statement or the merits of the alternatives formulated and discussed in the statement. Reviewers may wish to refer to the Council on Environmental Quality Regulations for implementing the procedural provisions of the National Environmental Policy Act at 40 CFR 1503.3 in addressing these points.

Dated: August 3, 2005.

Arthur J. Currier,

District Ranger.

[FR Doc. 05–16123 Filed 8–12–05; 8:45 am]

BILLING CODE 3410-11-M

DEPARTMENT OF AGRICULTURE

Forest Service

Notice of Lincoln County Resource Advisory Committee Meeting

AGENCY: Forest Service, USDA. **ACTION:** Notice of meeting.

SUMMARY: Pursuant to the authorities in the Federal Advisory Committee Act (Pub. L. 92–463) and under the Secure Rural Schools and Community Self-Determination Act of 2000 (Pub. L. 106–393) the Kootenai National Forest's Lincoln County Resource Advisory Committee will meet on Tuesday, September 6, 2005 at 6 p.m. at the Forest Supervisor's Office in Libby, Montana for a business meeting. The meeting is open to the public.

DATES: September 6, 2005.

ADDRESSES: Forest Supervisor's Office, 1101 U.S. Hwy. 2 West, Libby, Montana.

FOR FURTHER INFORMATION CONTACT:

Barbara Edgmon, Committee Coordinator, Kootenai National Forest at (406) 293–6211, or e-mail bedgmon@fs.fed.us.

SUPPLEMENTARY INFORMATION: Agenda topics include review and selection of submitted proposals for funding in fiscal year 2006, and receiving public comment. If the meeting date or location is changed, notice will be posted in the local newspapers, including the Daily Interlake based in Kalispell, Montana.

Dated: August 5, 2005.

Bob Castaneda,

Forest Supervisor.

[FR Doc. 05–16106 Filed 8–12–05; 8:45 am]

BILLING CODE 3410-11-M

DEPARTMENT OF COMMERCE

International Trade Administration (A-588-824)

Certain Corrosion–Resistant Carbon Steel Flat Products From Japan: Final Results of Antidumping Duty Changed Circumstances Review and Determination Not to Revoke, In Part

AGENCY: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: On December 7, 2004, the Department of Commerce ("the Department") published a notice of initiation of a changed circumstances review regarding certain corrosionresistant carbon steel flat products from Japan in response to a request for partial revocation received from Metal One Corporation ("Metal One"), and invited interested parties to submit comments. On December 27, 2004, United States Steel ("U.S. Steel") submitted a letter opposing the request for revocation. See Letter from U.S. Steel. On June 21, 2005, the Department published the preliminary results of the changed circumstances review and preliminarily determined that, as the domestic industry is interested in maintaining the order, revocation is not warranted. See Certain Corrosion–Resistant Carbon Steel Flat Products from Japan: Preliminary Results of Antidumping Duty Changed Circumstances Review and Intent Not to Revoke, In Part. 70 FR 35618 (June 21, 2005). Subsequent to the preliminary results, the Department received no case or rebuttal briefs regarding this changed circumstances review. Therefore, for the final results we continue to find that pursuant to section 751(d) of the Tariff Act of 1930, as amended ("the Act"), and 19 CFR 351.222(g)(1)(I), changed circumstances

do not exist to warrant revocation of the order in part.

EFFECTIVE DATE: August 15, 2005. **FOR FURTHER INFORMATION CONTACT:**

Christopher Hargett, AD/CVD Operations, Office 3, Import Administration, International Trade Administration, U.S. Department of Commerce, 14th Street and Constitution Avenue, NW, Washington, DC 20230; telephone (202) 482–4161.

SUPPLEMENTARY INFORMATION:

Background

On October 13, 2004, Metal One filed a request for a changed circumstances review on diffusion—annealed nickel plate, in accordance with 19 CFR 351.216(b). See Letter from Metal One. On December 7, 2004, the Department published in the Federal Register a notice of initiation of a changed circumstances review on certain corrosion—resistant carbon steel flat products from Japan with respect to diffusion—annealed nickel plate. See Notice of Initiation of Antidumping Duty Changed Circumstances Review, 69 FR 70633 (December 7, 2004).

On December 27, 2004, U.S. Steel submitted comments on the Department's initiation of a changed circumstances review. Specifically, U.S. Steel asserted that the domestic producers maintain interest in the products included in the changed circumstances review. U.S. Steel stated that its production of the domestic like product is well in excess of 15 percent of total domestic production. See Letter from U.S. Steel, December 27, 2004.

On June 21, 2005, the Department published the preliminary results of the changed circumstances review and preliminarily determined that Metal One had not shown that substantially all producers of domestic like products have expressed a lack of interest in the order, and that Metal One has not met the regulatory requirements to warrant revocation, in part, through a changed circumstances review. See Ceratin Corrosion-Resistant Carbon Steel Flat Products from Japan: Preliminary Results of Antidumping Duty Changed Circumstances Review and Intent Not to Revoke, In Part. 70 FR 35618 (June 21, 2005). We did not receive any comments on our preliminary results.

Scope of Order

The products subject to this order include flat—rolled carbon steel products, of rectangular shape, either clad, plated, or coated with corrosion—resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron—based alloys, whether or not corrugated

or painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating, in coils (whether or not in successively superimposed layers) and of a width of 0.5 inch or greater, or in straight lengths which, if of a thickness less than 4.75 mm, are of a width of 0.5 inch or greater and which measures at least 10 times the thickness, or if of a thickness of 4.75 mm or more, are of a width which exceeds 150 mm and measures at least twice the thickness, as currently classifiable in the HTS under item numbers: 7210.30.0030, 7210.30.0060, 7210.41.0000, 7210.49.0030, 7210.49.0090, 7210.61.0000, 7210.69.0000, 7210.70.6030, 7210.70.6060, 7210.70.6090, 7210.90.1000, 7210.90.6000, 7210.90.9000, 7212.20.0000, 7212.30.1030, 7212.30.1090, 7212.30.3000, 7212.30.5000, 7212.40.1000, 7212.40.5000, 7212.50.0000, 7212.60.0000, 7215.90.1000, 7215.90.3000, 7215.90.5000, 7217.20.1500, 7217.30.1530, 7217.30.1560, 7217.90.1000, 7217.90.5030,

Included in the order are flat—rolled products of nonrectangular cross-section where such cross-section is achieved subsequent to the rolling process (*i.e.*, products which have been "worked after rolling") -- for example, products which have been beveled or rounded at the edges.

7217.90.5060, and 7217.90.5090.

Excluded from the scope of the order are flat-rolled steel products either plated or coated with tin, lead, chromium, chromium oxides, both tin and lead ("terne plate"), or both chromium and chromium oxides ("tinfree steel"), whether or not painted, varnished or coated with plastics or other nonmetallic substances in addition to the metallic coating. Also excluded from the scope of the order are clad products in straight lengths of 0.1875 inch or more in composite thickness and of a width which exceeds 150 mm and measures at least twice the thickness. Also excluded from the scope of the order are certain clad stainless flat-rolled products, which are threelavered corrosion- resistant carbon steel flat-rolled products less than 4.75 mm in composite thickness that consist of a carbon steel flat-rolled product clad on both sides with stainless steel in a 20%-60%-20% ratio. See Antidumping Duty Order: Certain Corrosion–Resistant Carbon Steel Flat Products From Japan, 58 FR 44163 (August 19, 1993).

Exclusions Due to Changed Circumstances Reviews

The Department has issued the following rulings to date:

Excluded from the scope of this order are imports of certain corrosionresistant carbon steel flat products meeting the following specifications: widths ranging from 10 mm (0.394 inches) through 100 mm (3.94 inches); thicknesses, including coatings, ranging from 0.11 mm (0.004 inches) through 0.60 mm (0.024 inches); and a coating that is from 0.003 mm (0.00012 inches) through 0.005 mm (0.000196 inches) in thickness and that is comprised of three evenly applied layers, the first layer consisting of 99% zinc, 0.5% cobalt, and 0.5% molybdenum, followed by a layer consisting of chromate, and finally a layer consisting of silicate. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Final Results of Changed Circumstances Antidumping Duty Administrative Review, and Revocation in Part of Antidumping Duty Order, 62 FR 66848 (December 22, 1997).

Also excluded from the scope of this order are imports of subject merchandise meeting all of the following criteria: (1) Widths ranging from 10 mm (0.394 inches) through 100 mm (3.94 inches); (2) thicknesses, including coatings, ranging from 0.11 mm (0.004 inches) through 0.60 mm (0.024 inches); and (3) a coating that is from 0.003 mm (0.00012 inches) through 0.005 mm (0.000196 inches) in thickness and that is comprised of either two evenly applied layers, the first layer consisting of 99% zinc, 0.5% cobalt, and 0.5% molybdenum, followed by a layer consisting of chromate, or three evenly applied layers, the first layer consisting of 99% zinc, 0.5% cobalt, and 0.5% molybdenum followed by a layer consisting of chromate, and finally a layer consisting of silicate. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Final Results of Changed Circumstances Antidumping Duty Administrative Review, and Revocation in Part of Antidumping Duty Order, 64 FR 14861 (March 29, 1999).

Also excluded from the scope of this order are: (1) Carbon steel flat products measuring 1.84 mm in thickness and 43.6 mm or 16.1 mm in width consisting of carbon steel coil (SAE 1008) clad with an aluminum alloy that is balance aluminum, 20% tin, 1% copper, 0.3% silicon, 0.15% nickel, less than 1% other materials and meeting the requirements of SAE standard 783 for Bearing and Bushing Alloys; and (2) carbon steel flat products measuring 0.97 mm in thickness and 20 mm in

width consisting of carbon steel coil (SAE 1008) with a two-layer lining, the first layer consisting of a copper-lead alloy powder that is balance copper, 9% to 11% tin, 9% to 11% lead, less than 1% zinc, less than 1% other materials and meeting the requirements of SAE standard 792 for Bearing and Bushing Alloys, the second layer consisting of 45% to 55% lead, 38% to 50% PTFE, 3% to 5% molybdenum disulfide and less than 2% other materials. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 64 FR 57032 (October 22, 1999).

Also excluded from the scope of the order are imports of doctor blades meeting the following specifications: carbon steel coil or strip, plated with nickel phosphorous, having a thickness of 0.1524 mm (0.006 inches), a width between 31.75 mm (1.25 inches) and 50.80 mm (2.00 inches), a core hardness between 580 to 630 HV, a surface hardness between 900--990 HV; the carbon steel coil or strip consists of the following elements identified in percentage by weight: 0.90% to 1.05% carbon; 0.15% to 0.35% silicon; 0.30% to 0.50% manganese; less than or equal to 0.03% of phosphorous; less than or equal to 0.006% of sulfur; other elements representing 0.24%; and the remainder of iron. See Certain Corrosion–Resistant Carbon Steel Flat Products From Japan: Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 65 FR 53983 (September 6, 2000).

Also excluded from the scope of the order are imports of carbon steel flat products meeting the following specifications: carbon steel flat products measuring 1.64 mm in thickness and 19.5 mm in width consisting of carbon steel coil (SAE 1008) with a lining clad with an aluminum alloy that is balance aluminum; 10 to 15% tin; 1 to 3% lead; 0.7 to 1.3% copper; 1.8 to 3.5% silicon; 0.1 to 0.7% chromium; less than 1% other materials and meeting the requirements of SAE standard 783 for Bearing and Bushing Alloys. See Certain Corrosion–Resistant Carbon Steel Flat Products From Japan: Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 66 FR 8778 (February 2, 2001).

Also excluded from the scope of the order are carbon steel flat products meeting the following specifications: (1) Carbon steel flat products measuring 0.975 mm in thickness and 8.8 mm in width consisting of carbon steel coil (SAE 1012) clad with a two–layer lining, the first layer consisting of a copper–

lead alloy powder that is balance copper, 9%-11% tin, 9%-11% lead, maximum 1% other materials and meeting the requirements of SAE standard 792 for Bearing and Bushing Alloys, the second layer consisting of 13%-17% carbon, 13%-17% aromatic polyester, with a balance (approx. 66%-74%) of polytetrafluorethylene ("PTFE"); and (2) carbon steel flat products measuring 1.02 mm in thickness and 10.7 mm in width consisting of carbon steel coil (SAE 1008) with a two-layer lining, the first layer consisting of a copper-lead alloy powder that is balance copper, 9%-11% tin, 9%-11% lead, less than 0.35% iron, and meeting the requirements of SAE standard 792 for Bearing and Bushing Alloys, the second layer consisting of 45%-55% lead, 3%-5% molybdenum disulfide, with a balance (approx. 40%-52%) of PTFE. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Notice of Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 66 FR 15075 (March 15, 2001).

Also excluded from this order are products meeting the following specifications: carbon steel coil or strip, measuring 1.93 mm or 2.75 mm (0.076 inches or 0.108 inches) in thickness, 87.3 mm or 99 mm (3.437 inches or 3.900 inches) in width, with a low carbon steel back comprised of: carbon under 8%, manganese under 0.4% phosphorous under 0.04%, and sulfur under 0.05%; clad with aluminum alloy comprised of: 0.7% copper, 12% tin, 1.7% lead, 0.3% antimony, 2.5% silicon, 1% maximum total other (including iron), and remainder aluminum. Also excluded from this order are products meeting the following specifications: carbon steel coil or strip, clad with aluminum, measuring 1.75 mm (0.069 inches) in thickness, 89 mm or 94 mm (3.500 inches or 3.700 inches) in width, with a low carbon steel back comprised of: carbon under 8%, manganese under 0.4%, phosphorous under 0.04%, and sulfur under 0.05%; clad with aluminum alloy comprised of: 0.7% copper, 12% tin, 1.7% lead, 2.5% silicon, 0.3% antimony, 1% maximum total other (including iron), and remainder aluminum. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Notice of Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 66 FR 20967 (April 26, 2001).

Also excluded from this order are products meeting the following specifications: carbon steel coil or strip, measuring a minimum of and including

1.10 mm to a maximum of and including 4.90 mm in overall thickness, a minimum of and including 76.00 mm to a maximum of and including 250.00 mm in overall width, with a low carbon steel back comprised of: carbon under 0.10%, manganese under 0.40%, phosphorous under 0.04%, sulfur under 0.05%, and silicon under 0.05%; clad with aluminum alloy comprised of: under 2.51% copper, under 15.10% tin, and remainder aluminum as listed on the mill specification sheet. See Certain Corrosion–Resistant Carbon Steel Flat Products From Japan: Notice of Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 67 FR 7356 (February 19, 2002).

Also excluded from this order are products meeting the following specifications: (1) Diffusion–annealed, non-alloy nickel-plated carbon products, with a substrate of cold-rolled battery grade sheet ("CRBG") with both sides of the CRBG initially electrolytically plated with pure, unalloyed nickel and subsequently annealed to create a diffusion between the nickel and iron substrate, with the nickel plated coating having a thickness of 0-5 microns per side with one side equaling at least 2 microns; and with the nickel carbon sheet having a thickness of from 0.004" (0.10 mm) to 0.030" (0.762 mm) and conforming to the following chemical specifications (%): C <= 0.08; Mn <= 0.45; P <= 0.02; S <= 0.02; Al <= 0.15; and Si <= 0.10; and the following physical specifications: Tensile = 65 KSI maximum; Yield = 32 - 55 KSI; Elongation = 18% minimum (aim 34%); Hardness = 85 - 150 Vickers; Grain Type = Equiaxed or Pancake; Grain Size (ASTM) = 7-12; Delta r value = aim less than 0.2; Lankford value = <== 1.2.; and (2) next generation diffusion-annealed nickel plate meeting the following specifications: (a) nickelgraphite plated, diffusion-annealed, tin-nickel plated carbon products, with a natural composition mixture of nickel and graphite electrolytically plated to the top side of diffusion-annealed tinnickel plated carbon steel strip with a cold rolled or tin mill black plate base metal conforming to chemical requirements based on AISI 1006; having both sides of the cold rolled substrate electrolytically plated with natural nickel, with the top side of the nickel plated strip electrolytically plated with tin and then annealed to create a diffusion between the nickel and tin layers in which a nickel-tin alloy is created, and an additional layer of mixture of natural nickel and graphite then electrolytically plated on the top

side of the strip of the nickel-tin alloy; having a coating thickness: top side: nickel-graphite, tin-nickel laver <== 1.0 micrometers; tin layer only $\leq = 0.05$ micrometers, nickel-graphite layer only <= 0.2 micrometers, and bottom side: nickel layer <== 1.0 micrometers; (b) nickel-graphite, diffusion-annealed, nickel plated carbon products, having a natural composition mixture of nickel and graphite electrolytically plated to the top side of diffusion-annealed nickel plated steel strip with a cold rolled or tin mill black plate base metal conforming to chemical requirements based on AISI 1006; with both sides of the cold rolled base metal initially electrolytically plated with natural nickel, and the material then annealed to create a diffusion between the nickel and the iron substrate; with an additional layer of natural nickelgraphite then electrolytically plated on the top side of the strip of the nickel plated steel strip; with the nickelgraphite, nickel plated material sufficiently ductile and adherent to the substrate to permit forming without cracking, flaking, peeling, or any other evidence of separation; having a coating thickness: top side: nickel-graphite, tinnickel layer <== 1.0 micrometers; nickel-graphite layer <== 0.5 micrometers; bottom side: nickel layer <== 1.0 micrometers; (c) diffusionannealed nickel-graphite plated products, which are cold-rolled or tin mill black plate base metal conforming to the chemical requirements based on AISI 1006; having the bottom side of the base metal first electrolytically plated with natural nickel, and the top side of the strip then plated with a nickelgraphite composition; with the strip then annealed to create a diffusion of the nickel-graphite and the iron substrate on the bottom side; with the nickel-graphite and nickel plated material sufficiently ductile and adherent to the substrate to permit forming without cracking, flaking, peeling, or any other evidence of separation; having coating thickness: top side: nickel-graphite layer <== 1.0 micrometers; bottom side: nickel layer <== 1.0 micrometers; (d) nickelphosphorous plated diffusion-annealed nickel plated carbon product, having a natural composition mixture of nickel and phosphorus electrolytically plated to the top side of a diffusion-annealed nickel plated steel strip with a cold rolled or tin mill black plate base metal conforming to the chemical requirements based on AISI 1006; with both sides of the base metal initially electrolytically plated with natural nickel, and the material then annealed

to create a diffusion of the nickel and iron substrate; another layer of the natural nickel-phosphorous then electrolytically plated on the top side of the nickel plated steel strip; with the nickel-phosphorous, nickel plated material sufficiently ductile and adherent to the substrate to permit forming without cracking, flaking, peeling or any other evidence of separation; having a coating thickness: top side: nickel-phosphorous, nickel layer <== 1.0 micrometers; nickelphosphorous layer <== 0.1 micrometers; bottom side: nickel layer <== 1.0 micrometers; (e) diffusion-annealed, tin-nickel plated products, electrolytically plated with natural nickel to the top side of a diffusionannealed tin-nickel plated cold rolled or tin mill black plate base metal conforming to the chemical requirements based on AISI 1006; with both sides of the cold rolled strip initially electrolytically plated with natural nickel, with the top side of the nickel plated strip electrolytically plated with tin and then annealed to create a diffusion between the nickel and tin layers in which a nickel-tin alloy is created, and an additional layer of natural nickel then electrolytically plated on the top side of the strip of the nickel-tin alloy; sufficiently ductile and adherent to the substrate to permit forming without cracking, flaking, peeling or any other evidence of separation; having coating thickness: top side: nickel-tin-nickel combination layer <== 1.0 micrometers; tin layer only <== 0.05 micrometers; bottom side: nickel layer <== 1.0 micrometers; and (f) tin mill products for battery containers, tin and nickel plated on a cold rolled or tin mill black plate base metal conforming to chemical requirements based on AISI 1006; having both sides of the cold rolled substrate electrolytically plated with natural nickel; then annealed to create a diffusion of the nickel and iron substrate; then an additional layer of natural tin electrolytically plated on the top side; and again annealed to create a diffusion of the tin and nickel alloys; with the tin-nickel, nickel plated material sufficiently ductile and adherent to the substrate to permit forming without cracking, flaking, peeling or any other evidence of separation; having a coating thickness: top side: nickel-tin laver <== 1 micrometer; tin layer alone <== 0.05 micrometers; bottom side: nickel layer <== 1.0 micrometer. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Notice of Final Results of Changed Circumstances

Review, and Revocation in Part of Antidumping Duty Order, 67 FR 47768 (July 22, 2002).

Also excluded from this order are products meeting the following specifications: (1) Widths ranging from 10 mm (0.394 inches) through 100 mm (3.94 inches); (2) thicknesses, including coatings, ranging from 0.11 mm (0.004 inches) through 0.60 mm (0.024 inches); and (3) a coating that is from 0.003 mm (0.00012 inches) through 0.005 mm (0.000196 inches) in thickness and that is comprised of either two evenly applied layers, the first layer consisting of 99% zinc, 0.5% cobalt, and 0.5% molybdenum, followed by a layer consisting of phosphate, or three evenly applied layers, the first layer consisting of 99% zinc, 0.5% cobalt, and 0.5% molvbdenum followed by a laver consisting of phosphate, and finally a layer consisting of silicate. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Notice of Final Results of Changed Circumstances Review, and Revocation in Part of Antidumping Duty Order, 67 FR 57208

(September 9, 2002).

Also excluded from this order are products meeting the following specifications: (1) Flat–rolled products (provided for in HTSUS subheading 7210.49.00), other than of high-strength steel, known as "ASE Iron Flash" and either: (A) having a base layer of zincbased zinc-iron alloy applied by hotdipping and a surface layer of iron-zinc alloy applied by electrolytic process, the weight of the coating and plating not over 40% by weight of zinc; or (B) twolayer-coated corrosion-resistant steel with a coating composed of (a) a base coating layer of zinc-based zinc-iron alloy by hot-dip galvanizing process, and (b) a surface coating layer of ironzinc alloy by electro-galvanizing process, having an effective amount of zinc up to 40% by weight, and (2) corrosion resistant continuously annealed flat-rolled products, continuous cast, the foregoing with chemical composition (percent by weight): carbon not over 0.06% by weight, manganese 0.20 or more but not over 0.40, phosphorus not over 0.02, sulfur not over 0.023, silicon not over 0.03, aluminum 0.03 or more but not over 0.08, arsenic not over 0.02, copper not over 0.08 and nitrogen 0.003 or more but not over 0.008; and meeting the characteristics described below: (A) Products with one side coated with a nickel-iron-diffused layer which is less than 1 micrometer in thickness and the other side coated with a two-layer coating composed of a base nickel-irondiffused coating layer and a surface coating layer of annealed and softened

pure nickel, with total coating thickness for both layers of more than 2 micrometers; surface roughness (RAmicrons) 0.18 or less; with scanning electron microscope (SEM) not revealing oxides greater than 1 micron; and inclusion groups or clusters shall not exceed 5 microns in length; (B) products having one side coated with a nickeliron-diffused layer which is less than 1 micrometer in thickness and the other side coated with a four-layer coating composed of a base nickel-iron-diffused coating layer; with an inner middle coating layer of annealed and softened pure nickel, an outer middle surface coating layer of hard nickel and a topmost nickel-phosphorus-plated layer; with combined coating thickness for the four layers of more than 2 micrometers; surface roughness (RAmicrons) 0.18 or less; with SEM not revealing oxides greater than 1 micron; and inclusion groups or clusters shall not exceed 5 microns in length; (C) products having one side coated with a nickel-iron-diffused layer which is less than 1 micrometer in thickness and the other side coated with a three-layer coating composed of a base nickel-irondiffused coating layer, with a middle coating layer of annealed and softened pure nickel and a surface coating layer of hard, luster-agent-added nickel which is not heat-treated; with combined coating thickness for all three layers of more than 2 micrometers; surface roughness (RA-microns) 0.18 or less; with SEM not revealing oxides greater than 1 micron; and inclusion groups or clusters shall not exceed 5 microns in length; or (D) products having one side coated with a nickeliron-diffused layer which is less than 1 micrometer in thickness and the other side coated with a three-layer coating composed of a base nickel-iron-diffused coating layer, with a middle coating layer of annealed and softened pure nickel and a surface coating layer of hard, pure nickel which is not heattreated; with combined coating thickness for all three layers of more than 2 micrometers; surface roughness (RA-microns) 0.18 or less; SEM not revealing oxides greater than 1 micron; and inclusion groups or clusters shall not exceed 5 microns in length. See Certain Corrosion-Resistant Carbon Steel Flat Products From Japan: Notice of Final Results of Changed Ćircumstances Review, and Revocation in Part of Antidumping Duty Order, 68 FR 19970 (April 23, 2003).

Also excluded from the scope of this order is merchandise meeting the following specifications: (1) Base metal: Aluminum Killed, Continuous Cast,

Carbon Steel SAE 1008, (2) Chemical Composition: Carbon 0.08% max. Silicon, 0.03% max., Manganese 0.40% max., Phosphorus, 0.02% max., Sulfur 0.02% max., (3) Nominal thickness of 0.054 mm, (4) Thickness Tolerance minimum 0.0513 mm, maximum 0.0567 mm, (5) Width of 600 mm or greater, and (7) Nickel plate min. 2.45 microns per side. See Notice of Final Results of Changed Circumstances Review and Revocation, in Part: Certain Corrosion-Resistant Carbon Steel Flat Products From Japan, 70 FR 2608 (January 14, 2005).

Also excluded from the scope of this order are the following 24 separate corrosion-resistant carbon steel coil products meeting the following specifications:

Product 1 Products described in industry usage as of carbon steel, measuring 1.625 mm to 1.655 mm in thickness and 19.3 mm to 19.7 mm in width, consisting of carbon steel coil (SAE 1010) with a lining clad with an aluminum alloy containing by weight 10% or more but not more than 15% of tin, 1% or more but not more than 3% of lead, 0.7% or more but not more than 1.3% of copper, 1.8% or more but not more than 3.5% of silicon, 0.1% or more but not more than 0.7% of chromium and less than or equal to 1% of other materials, and meeting the requirements of SAE standard 788 for Bearing and Bushing Alloys.

Product 2 Products described in industry usage as of carbon steel, measuring 0.955 mm to 0.985 mm in thickness and 8.6 mm to 9.0 mm in width, consisting of carbon steel coil (SAE 1012) clad with a two-layer lining, the first layer consisting of a copperlead alloy powder that contains by weight 9% or more but not more than 11% of tin, 9% or more but not more than 11% of lead, less than 0.05% phosphorus, less than 0.35% iron and less than or equal to 1% other materials, and meeting the requirements of SAE standard 797 for Bearing and Bushing Alloys, with the second layer containing by weight 13% or more but not more than 17% of carbon, 13% or more but not more than 17% of aromatic polyester, and the remainder (approx. 66-74%) of PTFE.

Product 3 Products described in industry usage as of carbon steel, measuring 1.01 mm to 1.03 mm in thickness and 10.5 mm to 10.9 mm in width, consisting of carbon steel coil (SAE 1010) with a two-layer lining, the first layer consisting of a copper-lead alloy powder that contains by weight 9% or more but not more than 11% of tin, 9% or more but not more than 11% of lead, less than 1% zinc and less than

or equal to 1% other materials, and meeting the requirements of SAE standard 797 for Bearing and Bushing Alloys, with the second layer containing by weight 45% or more but not more than 55% of lead, 3% or more but not more than 5% of molybdenum disulfide, and the remainder made up of PTFE (approximately 38% to 52%) and less than 2% in the aggregate of other materials.

Product 4 Products described in industry usage as of carbon steel, measuring 1.8 mm to 1.88 mm in thickness and 43.4 mm to 43.8 mm or 16.1 mm to 1.65 mm in width, consisting of carbon steel coil (SAE 1010) clad with an aluminum alloy that contains by weight 19% to 20% tin, 1% to 1.2% copper, less than 0.3% silicon, 0.15% nickel and less than 1% in the aggregate other materials and meeting the requirements of SAE standard 783 for Bearing and Bushing Alloys. Product 5 Products described in industry usage as of carbon steel, measuring 0.95 mm to 0.98 mm in thickness and 19.95 mm to 20 mm in width, consisting of carbon steel coil (SAE 1010) with a two-layer lining, the first layer consisting of a copper-lead alloy powder that contains by weight 9% or more but not more than 11% of tin, 9% or more but not more than 11% of lead, less than 1% of zinc and less than or equal to 1% in the aggregate of other materials and meeting the requirements of SAE standard 797 for Bearing and Bushing Alloys, with the second laver consisting by weight of 45% or more but not more than 55% of lead, 3% or more but not more than 5% of molybdenum disulfide and with the remainder made up of PTFE (approximately 38% to 52%) and up to 2% in the aggregate of other materials. Product 6 Products described in industry usage as of carbon steel, measuring 0.96 mm to 0.98 mm in thickness and 18.75 mm to 18.95 mm in width; base of SAE 1010 steel with a two-layer lining, the first layer consisting of copper–base alloy powder with chemical composition (percent by weight): tin 9 to 11, lead 9 to 11, phosphorus less than 0.05, ferrous group less than 0.35, and other materials less than 1%; meeting the requirements of SAE standard 797 for bearing and bushing alloys; the second layer consisting of lead 33 to 37%, aromatic polyester 28 to 32%, and other materials less than 2% with a balance of PTFE. Product 7 Products described in industry usage as of carbon steel, measuring 1.21 mm to 1.25 mm in thickness and 19.4 mm to 19.6 mm in width; base of SAE 1012 steel with lining of copper base alloy with

chemical composition (percent by weight): tin 9 to 11, lead 9 to 11, phosphorus less than 0.05, ferrous group less than 0.35 and other materials less than 1%; meeting the requirements of SAE standard 797 for bearing and bushing alloys. Product 8 Products described in industry usage as of carbon steel, measuring 0.96 mm to 0.98 mm in thickness and 21.5 mm to 21.7 mm in width; base of SAE 1010 steel with a two-layer lining, the first layer consisting of copper–base alloy powder with chemical composition (percent by weight): tin 9 to 11, lead 9 to 11, phosphorus less than 0.05%, ferrous group less than 0.35 and other materials less than 1; meeting the requirements of SAE standard 797 for bearing and bushing alloys; the second layer consisting of (percent by weight) lead 33 to 37, aromatic polyester 28 to 32 and other materials less than 2 with a balance of PTFE. Product 9 Products described in industry usage as of carbon steel, measuring 0.96 mm to 0.99 mm in thickness and 7.65 mm to 7.85 mm in width; base of SAE 1012 steel with a two-layer lining, the first layer consisting of copper-based alloy powder with chemical composition (percent by weight): tin 9 to 11, lead 9 to 11, phosphorus less than 0.05, ferrous group less than 0.35 and other materials less than 1; meeting the requirements of SAE standard 797 for bearing and bushing alloys; the second layer consisting of (percent by weight) carbon 13 to 17 and aromatic polyester 13 to 17, with a balance of polytetrafluoroethylene ("PTFE") Product 10 Products described in industry usage as of carbon steel, measuring 0.955 mm to 0.985 mm in thickness and 13.6 mm to 14 mm in width; base of SAE 1012 steel with a

two-layer lining, the first layer consisting of copper-based alloy powder with chemical composition (percent by weight): tin 9 to 11, lead 9 to 11, phosphorus less than 0.05, ferrous group less than 0.35 and other materials less than 1; meeting the requirements of SAE standard 797 for bearing and bushing alloys; the second layer consisting of (percent by weight) carbon 13 to 17, aromatic polyester 13 to 17, with a balance (approximately 66 to 74) of PTFE. Product 11 Products described in

industry usage as of carbon steel, measuring 1.2 mm to 1.24 mm in thickness; 20 mm to 20.4 mm in width; consisting of carbon steel coils (SAE 1012) with a lining of sintered phosphorus bronze alloy with chemical composition (percent by weight): tin 5.5 to 7; phosphorus 0.03 to 0.35; lead less than 1 and other non–copper materials less than 1.

Product 12 Products described in industry usage as of carbon steel, measuring 1.8 mm to 1.88 mm in thickness and 43.3 mm to 43.7 mm in width; base of SAE 1010 steel with a lining of aluminum based alloy with chemical composition (percent by weight: tin 10 to 15, lead 1 to 3, copper 0.7 to 1.3, silicon 1.8 to 3.5, chromium 0.1 to 0.7 and other materials less than 1; meeting the requirements of SAE standard 788 for bearing and bushing alloys.

Product 13 Products described in industry usage as of carbon steel, measuring 1.8 mm to 1.88 mm in thickness and 24.2 mm to 24.6 mm in width; base of SAE 1010 steel with a lining of aluminum alloy with chemical composition (percent by weight): tin 10 to 15, lead 1 to 3, copper 0.7 to 1.3, silicon 1.8 to 3.5, chromium 0.1 to 0.7 and other materials less than 1; meeting the requirements of SAE standard 788 for bearing and bushing alloys. Product 14 Flat-rolled coated SAE 1009 steel in coils, with thickness not less than 0.915 mm but not over 0.965 mm, width not less than 19.75 mm or more but not over 20.35 mm; with a two-layer coating; the first layer consisting of tin 9 to 11%, lead 9 to 11%, zinc less than 1%, other materials (other than copper) not over 1% and balance copper; the second layer consisting of lead 45 to 55%, molybdenum disulfide (MoS2) 3 to 5%, other materials not over 2%, balance PTFE.

Product 15 Flat—rolled coated SAE 1009 steel in coils with thickness not less than 0.915 mm or more but not over 0.965 mm; width not less than 18.65 mm or more but not over19.25 mm; with a two—layer coating; the first layer consisting of tin 9 to 11%, lead 9 to 11%, zinc less than 1%, other materials (other than copper) not over 1%, balance copper; the second layer consisting of lead 33 to 37%, aromatic polyester 13 to 17%, other materials other than PTFE less than 2%, balance

Product 16 Flat—rolled coated SAE 1009 steel in coils with thickness not less than 0.920 mm or more but not over 0.970 mm; width not less than 21.35 mm or more but not over 21.95 mm; with a two—layer coating; the first layer consisting of tin 9 to 11%, lead 9 to 11%, zinc less than 1%, other materials (other than copper) not over 1%, balance copper; the second layer consisting of lead 33 to 37%, aromatic polyester 13 to 17%, other materials (other than PTFE) less than 2%, balance PTFE.

Product 17 Flat—rolled coated SAE 1009 steel in coils with thickness not less than 1.80 mm or more but not over 1.85 mm, width not less than 14.7 mm or more but not over 15.3 mm; with a lining consisting of tin 2.5 to 4.5%, lead 21.0 to 25.0%, zinc less than 3%, iron less than 0.35%, other materials (other than copper) less than 1%, balance copper.

steel in coils with thickness 1.59 mm or more but not over 1.64 mm; width 14.5 mm or more but not over 15.1 mm; with a lining consisting of tin 2.3 to 4.2%, lead 20 to 25%, iron 1.5 to 4.5%, phosphorus 0.2 to 2.0%, other materials (other than copper) less than 1%, balance copper.

Product 19 Flat-rolled coated SAE 1009 steel in coils with thickness not less than 1.75 mm or more but not over 1.8 mm; width not less than 18.0 mm or more but not over 18.6 mm; with a lining consisting of tin 2.3 to 4.2%, lead 20 to 25%, iron 1.5 to 4.5%, phosphorus 0.2 to 2.0%, other materials (other than copper) less than 1%, balance copper. Product 20 Flat-rolled coated SAE 1009 steel in coils with thickness 1.59 mm or more but not over 1.64 mm; width 13.6 mm or more but not over14.2 mm; with a lining consisting of tin 2.3 to 4.2%, lead 20 to 25%, iron 1.5 to 4.5%, phosphorus 0.2 to 2.0%, other materials (other than copper) less than 1%, with a balance copper.

Product 21 Flat—rolled coated SAE 1009 steel in coils with thickness 1.59 mm or more but not over 1.64 mm; width 11.5 mm or more but not over 12.1 mm; with a lining consisting of tin 2.3 to 4.2%, lead 20 to 25%, iron 1.5 to 4.5%, phosphorus 0.2 to 2.0%, other materials (other than copper) less than 1%, balance copper.

Product 22 Flat—rolled coated SAE 1009 steel in coils with thickness 1.59 mm or more but not over 1.64 mm; width 11.2 mm or more but not over 11.8 mm, with a lining consisting of copper 0.7 to 1.3%, tin 17.5 to 22.5%, silicon less than 0.3%, nickel less than 0.15%, other materials less than 1%, balance aluminum.

Product 23 Flat—rolled coated SAE 1009 steel in coils with thickness 1.59 mm or more but not over1.64 mm; width 7.2 mm or more but not over 7.8 mm; with a lining consisting of copper 0.7 to 1.3%, tin 17.5 to 22.5%, silicon less than 0.3%, nickel less than 0.15%, other materials (other than copper) less than 1%, balance copper.

Product 24 Flat—rolled coated SAE 1009 steel in coils with thickness 1.72 mm or more but not over 1.77 mm; width 7.7 mm or more but not over 8.3 mm; with a lining consisting of copper 0.7 to

1.3%, tin 17.5 to 22.5%, silicon less than 0.3%, nickel less than 0.15%, other materials (other than copper) less than 1%, balance copper. See Notice of Final Results of Antidumping Duty Changed Circumstances Review and Revocation, In Part: Certain Corrosion–Resistant Carbon Steel Flat Products From Japan, 70 FR 5137 (February 1, 2005).

Final Results of Changed Circumstances Review

Given that we received no comments from interested parties on the Preliminary Results, and for the reasons stated in the Preliminary Results, we find that there is interest by the domestic industry in maintaining the order. Therefore, the Department is not revoking the order on certain corrosion–resistant carbon steel flat products from Japan with respect to the product which meets the specifications detailed above, in accordance with sections 751(b) and (d) of the Act and 19 CFR 351.222(g)(1)(I).

This notice also serves as a reminder to parties subject to administrative protective orders ("APO"s) of their responsibility concerning the disposition of proprietary information disclosed under APO in accordance with 19 CFR 351.306. Timely written notification of the return/destruction of APO materials or conversion to judicial protective order is hereby requested. Failure to comply with the regulations and terms of an APO is a sanctionable violation.

This determination is issued and published in accordance with sections 751(b)(1) and 777(I)(1) of the Act and section 19 CFR 351.216 of the Department's regulations.

Dated: August 4, 2005.

Joseph A. Spetrini,

Acting Assistant Secretary for Import Administration.

[FR Doc. E5-4408 Filed 8-12-05; 8:45 am] BILLING CODE 3510-DS-S

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

[I.D. 040505A]

Small Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey Across the Arctic Ocean

AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.